Apache Kafka 1.1.0 发布,改进 Kafka controller

栏目: 软件资讯 发布于: 2018-03-30 09:20:04

Apache Kafka 1.1.0 已发布,带来了大量改进和修复。主要亮点包括:

  • Kafka 1.1.0 includes significant improvements to the Kafka Controller that speed up controlled shutdown. ZooKeeper session expiration edge cases have also been fixed as part of this effort.

  • Controller improvements also enable more partitions to be supported on a single cluster. KIP-227 introduced incremental fetch requests, providing more efficient replication when the number of partitions is large.

  • KIP-113 added support for replica movement between log directories to enable data balancing with JBOD.

  • Some of the broker configuration options like SSL keystores can now be updated dynamically without restarting the broker. See KIP-226 for details and the full list of dynamic configs.

  • Delegation token based authentication (KIP-48) has been added to Kafka brokers to support large number of clients without overloading Kerberos KDCs or other authentication servers.

  • Several new features have been added to Kafka Connect, including header support (KIP-145), SSL and Kafka cluster identifiers in the Connect REST interface (KIP-208 and KIP-238), validation of connector names (KIP-212) and support for topic regex in sink connectors (KIP-215). Additionally, the default maximum heap size for Connect workers was increased to 2GB.

  • Several improvements have been added to the Kafka Streams API, including reducing repartition topic partitions footprint, customizable error handling for produce failures and enhanced resilience to broker unavailability. See KIPs 205, 210, 220, 224 and 239 for details.

完整更新内容请查阅:

下载地址:


【声明】文章转载自:开源中国社区 [http://www.oschina.net]

本站文章除注明转载外,均为本站原创或编译。欢迎任何形式的转载,但请务必注明出处。
转载请注明:文章转载自 [http://www.php230.com]
本文标题:Apache Kafka 1.1.0 发布,改进 Kafka controller
IT技术书籍推荐:
利用Python进行数据分析
利用Python进行数据分析
麦金尼 (Wes McKinney) (作者), 唐学韬 (译者), 等 (译者)
《利用Python进行数据分析》内容简介:学习NumPy(NumericalPython)的基础和高级知识;从pandas库的数据分析工具开始利用高性能工具对数据进行加载、清理、转换、合并以及重塑;利用matpIotlib创建散点图以及静态或交互式的可视化结果;利用pandas的groupby功能对数据集进行切片、切块和汇总操作;处理各种各样的时间序列数据。
最新互联网资讯